National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
RESEARCH AND DEVELOPMENT COMPOSITE MATERIAL WITH A HIGHER RESISTANCE TO HIGH TEMPERATURES
Válek, Jaroslav ; Durica,, Tibor (referee) ; Kolář,, Karel (referee) ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
Concrete has many advantageous properties as regards resistance to fire. It is non-flammable and it has a low thermal conductivity. However, concrete structures, which are not designed for resistance against fire, show significant damage after heating. In particular, the explosive flaking with the consequence of weakening the reinforced concrete cross-section and exposing the steel reinforcement to the temperatures higher than critical temperature of reinforcement. There are only a few possible measures of preventing or mitigating the effects temperature load used. Ways of protection can be divided into two systems: active and passive. Active systems are designed to ensure the greatest possible reduction of temperatures the concrete is exposed to. Passive systems directly resist to high temperatures and fire. Design of composition of concrete with the aim of higher resistance to exposition to high temperatures belongs among the passive systems. A part of the work focuses on summary searches of the problems of concrete and reinforced concrete structures exposed to high temperatures and fire. The goal of the work is defining requirements for cement matrix based composite material and its design ensuring the highest possible resistance to high temperatures or direct fire.
Analysis of stress state and failure in test specimens used for determination of fracture-mechanical parameters of quasi-brittle materials
Holušová, Táňa ; Seitl,, Stanislav (referee) ; Veselý, Václav (advisor)
The thesis is focused on a test on determination of the fracture-mechanical parameters of quasi-brittle materials, especially concrete. What is referred to as the wedge-splitting test is considered, for which a variety of shapes of notched specimen can be used. This work is exclusively focused on the cylinder-shaped specimen of diameter 150 mm and breadth of 100 mm. The test is performed virtually using Atena 2D FEM software. Progress of failure is observed during loading of the specimen for various notch lengths. The amount of energy released for the development the failure outside of the tested cross-sectional area (weakened by the notch) is quantified and the size of the fracture process zone is investigated. The described analysis is performed for several material sets witch differ in cohesive properties of the quasi-brittle material expressed via the so-called characteristic length. Suitable proportions of the test specimen are sought, in order to avoid the failure and thus also the energy dissipation outside of the specimen ligament area during the experimental tests, which shall lead to more accurate estimates of fracture-mechanical parameters of the tested material.
Cement Composite for 3D Printing Technology
Lipoldová, Marie ; Hela, Rudolf (referee) ; Bodnárová, Lenka (advisor)
3D printing technology represents a fast-growing industry within many industrial sectors. This bachelor thesis is focused on possibilities of using 3D printing technology in building industry. In the theoretical part there are stated typical technologies and realizations of 3D printing in the field of construction. The thesis also includes a research which is essential for the determination of requirements for cement composites for 3D printing technologies including tests for verification of their properties. The experimental part of the bachelor thesis is focused on testing of various recipes of cementitious composites, especially on the properties of both fresh and hardened composites. Two batches were tested for the suitability of utilisation of waste PET particles.
Cement Composite for 3D Printing Technology
Lipoldová, Marie ; Hela, Rudolf (referee) ; Bodnárová, Lenka (advisor)
3D printing technology represents a fast-growing industry within many industrial sectors. This bachelor thesis is focused on possibilities of using 3D printing technology in building industry. In the theoretical part there are stated typical technologies and realizations of 3D printing in the field of construction. The thesis also includes a research which is essential for the determination of requirements for cement composites for 3D printing technologies including tests for verification of their properties. The experimental part of the bachelor thesis is focused on testing of various recipes of cementitious composites, especially on the properties of both fresh and hardened composites. Two batches were tested for the suitability of utilisation of waste PET particles.
Fracture Analysis of Cube- and Cylinder-shaped WST Specimens Made of Cementitious Composites with Various Characteristic Length
Řoutil, L. ; Veselý, V. ; Seitl, Stanislav
The paper is focused on finding reasonable proportions for both cube-shaped and cylinder-shaped silicate-based composite specimens subjected to wedge-splitting tests. The analysis is conducted using finite element method code with an implemented cohesive crack model. The aspect of the material's brittleness, related to the heterogeneity of the material and described by what is termed as the characteristic length of quasi-brittle material, is accented. The results yield some recommendations for the determination of parameters of nonlinear fracture models for cementitious composites by means of wedge splitting tests of laboratory specimens of the two standard shapes.
RESEARCH AND DEVELOPMENT COMPOSITE MATERIAL WITH A HIGHER RESISTANCE TO HIGH TEMPERATURES
Válek, Jaroslav ; Durica,, Tibor (referee) ; Kolář,, Karel (referee) ; Sitek,, Libor (referee) ; Bodnárová, Lenka (advisor)
Concrete has many advantageous properties as regards resistance to fire. It is non-flammable and it has a low thermal conductivity. However, concrete structures, which are not designed for resistance against fire, show significant damage after heating. In particular, the explosive flaking with the consequence of weakening the reinforced concrete cross-section and exposing the steel reinforcement to the temperatures higher than critical temperature of reinforcement. There are only a few possible measures of preventing or mitigating the effects temperature load used. Ways of protection can be divided into two systems: active and passive. Active systems are designed to ensure the greatest possible reduction of temperatures the concrete is exposed to. Passive systems directly resist to high temperatures and fire. Design of composition of concrete with the aim of higher resistance to exposition to high temperatures belongs among the passive systems. A part of the work focuses on summary searches of the problems of concrete and reinforced concrete structures exposed to high temperatures and fire. The goal of the work is defining requirements for cement matrix based composite material and its design ensuring the highest possible resistance to high temperatures or direct fire.
Analysis of stress state and failure in test specimens used for determination of fracture-mechanical parameters of quasi-brittle materials
Holušová, Táňa ; Seitl,, Stanislav (referee) ; Veselý, Václav (advisor)
The thesis is focused on a test on determination of the fracture-mechanical parameters of quasi-brittle materials, especially concrete. What is referred to as the wedge-splitting test is considered, for which a variety of shapes of notched specimen can be used. This work is exclusively focused on the cylinder-shaped specimen of diameter 150 mm and breadth of 100 mm. The test is performed virtually using Atena 2D FEM software. Progress of failure is observed during loading of the specimen for various notch lengths. The amount of energy released for the development the failure outside of the tested cross-sectional area (weakened by the notch) is quantified and the size of the fracture process zone is investigated. The described analysis is performed for several material sets witch differ in cohesive properties of the quasi-brittle material expressed via the so-called characteristic length. Suitable proportions of the test specimen are sought, in order to avoid the failure and thus also the energy dissipation outside of the specimen ligament area during the experimental tests, which shall lead to more accurate estimates of fracture-mechanical parameters of the tested material.
Velikost lomové procesní zóny a disipační energie během šíření trhliny v kvazi křehkém materiálu
Řoutil, L. ; Veselý, V. ; Keršner, Z. ; Seitl, Stanislav ; Knésl, Zdeněk
The paper presents a numerical analysis of fracture processes in testing specimen configurations with substantially different crack tip stress constraint levels. Specimens of several sizes and relative notch lengths are taken into account. The features of the distribution of current/cumulative value of fracture energy along the specimen ligament are discussed and related to estimations of fracture process zone (FPZ) size and shape, in which the energy is dissipated. Significant effect of the stress constraint on the size/shape of the FPZ, and consequently the energy dissipated within it, is reported.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.